

GCE MARKING SCHEME

MATHEMATICS - M1-M3 & S1-S3 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Paper	Page
M1	1
M2	9
M3	17
S1	23
S2	26
S3	29

2(b)

N2L applied to person

$$64g - R = 64a$$

$$R = 64 \times 9.8 - 64 \times 0.425$$

$$R = 600 \text{ N}$$

- M1 64g and R opposing Dim correct equation
- A1 correct equation
- A1

Q	Solution	Mark	Notes
3(a)	$v^{2} = u^{2} + 2as, v=0, a=(\pm)9.8, s=18.225$ $0 = u^{2} - 2 \times 9.8 \times 18.225$ $u = \underline{18.9}$	M1 A1 A1	oe used convincing
3(b)	Use of $s = ut + 0.5at^2$, $s=(\pm)2.8$, $a=(\pm)9.8$, u=18.9 $-2.8 = 18.9t + 0.5 \times (-9.8)t^2$ $4.9t^2 - 18.9t - 2.8 = 0$ $7t^2 - 27t - 4 = 0$	M1 A1	oe
	$(7t+1)(t-4) = 0$ $t = \underline{4s}$	m1 solving A1	correct method for g quad equ seen cao

Solution Mark Notes

4

Q

5 ~ 4(a) N2L applied to B 5g - T = 5aM1 dim correct equation 5g and T opposing. $T = 5 \times 9.8 - 5 \times 1.61$ A1 T = 40.95 N A1 cao R = 9g = (88.2 N)**B**1 si $F = 9\mu g = (88.2\mu)$ **B**1 si N2L applied to A M1 dim correct equation T and F opposing T-F = 9aA1 $T - 88.2\mu = 9 \times 1.61$ $\mu = \underline{0.3}$ A1 cao limiting friction = $9\mu g = 9 \times 0.6g = 5.4g$ 4(b) B1 Limiting friction > 5g

Particle will remain at rest

 $T = 5g = \underline{49 \text{ N}}$

© WJEC CBAC Ltd.

R1

B1

oe

Solution Mark Notes Q

5

5(a)(i) Resolve vertically R + 84 = 12gR = 33.6

5(a)(ii) Moments about C

$$12g \times 0.2 = 84(x - 0.8)$$

84x = 12g × 0.2 + 84 × 0.8
x = 1.08

M1	equation, no extra force
	oe
B1	any correct moment
A1	correct equation
	-
A1	cao

all forces, no extras

5(b)	When about to tilt about C , $R_D = 0$	Μ
	Moments about C	m
	$Mg \times 0.8 = 12g \times 0.2$	
	$M = \underline{3}$	A

M1	si
m1	equation, no extra force

.1

M1

A1

A1

cao

6.

- 6(a) Conservation of momentum $2u + 5 \times 0 = 2 \times (-2) + 5 \times 3$ u = 5.56(b) Restitution
 - 3 (-2) = -e(0 5.5) $e = \frac{10}{11} = 0.909$
- 6(c) Impulse = change of momentum I = 5(3-0) $I = \underline{15 (Ns)}$
- 6(d) v' = ev $v' = 0.25 \times 3$ $v' = 0.75 \text{ ms}^{-1}$

M1 equation required, only 1 sign error. A1 correct equation A1 M1 only 1 sign error A1 ft u A1 cao M1 for P or QA1 + required M1 used A1 + required

Q	Solution	Mark	Notes
7.(a)	Resolve $X = 85 - 40 + 75 \cos \alpha$ $X = 85 - 40 + 75 \times 0.8$ X = 105	M1 B1 A1	attempted any correct resolution all correct accept cos36.9
	Resolve	M1	attempted
	$Y = 60 - 75 \sin \alpha$ $Y = 60 - 75 \times 0.6$ Y = 15	A1	all correct, accept sin 36.9
	$R = \sqrt{105^2 + 15^2}$	M1	
	$R = 75\sqrt{2} = 106.066 \text{ N}$	A1	cao
	$\theta = \tan^{-1} \left(\frac{15}{105} \right)$	M1	allow reciprocal
	$\theta = \underline{8.13^{\circ}}$	A1	cao
7(b)	N2L applied to particle $75\sqrt{2} = 5a$ $a = 15\sqrt{2} = 21.21 \text{ ms}^{-2}$	M1 A1	dim correct equation ft <i>R</i> if first 2 M's gained.

Q	Solution		Mark	Notes
8.	Area from AD	from AB		
	APCD 48 3	4	B1	
	<i>PBC</i> 24 8	8/3	B1	
	Circle 4π 3	3	B1	
	Lamina (72-4 π) x	У	B 1	areas
8(a)	Moments about AD		M1	equation
	$48 \times 3 + 24 \times 8 = 4\pi \times 3 +$	$+(72 - 4\pi)x$	A1	ft table
	x = 5.02 cm		A1	cao
	Moments about AB		M1	equation
	$48 \times 4 + 24 \times 8/3 = 4\pi \times 3$	$3 + (72 - 4\pi)y$	A1	ft table
	$y = 3.67 \mathrm{cm}$		A1	cao
8(b)	AQ = 3.67 cm		B1	ft y

Q	Solution	Mark	Notes
1(a)	Loss in KE = 0.5mv^2 = $0.5 \times 8 \times 7^2$ = <u>196J</u>	M1 A1	Corr use of KE formula
1(b)	Work energy principle $196 = F \times 15$ $F = \mu R$ $= 8g\mu = (78.4\mu)$ Therefore $196 = 78.4\mu \times 15$	M1 A1 B1	correct use ft loss in KE
	$\mu = \frac{1}{6}$	A1	ft loss in KE. Isw
	OR Use of $v^2=u^2+2as$ $0=7^2 + 2a \times 15$ a = -1.633	(M1)	
	Use F = ma -F = 8× -1.633 F = 8µg $\mu = \frac{13 \cdot 067}{8g} = \frac{1}{6}$	(M1) (B1) (A1)p	

M2

Q	Solution	Mark	Notes
2(a)	$\mathbf{r} = \int v \mathrm{d}t$	M1	use of integration
	$\mathbf{r} = \int (13t-3) + (2+3t^2) \mathbf{j} dt$ $\mathbf{r} = \left(\frac{13}{2}t^2 - 3t\right) \mathbf{i} + (2t+t^3) \mathbf{j} + (\underline{\mathbf{c}})$	A1 A1	one for each coefficient
	When $t = 0$, $\mathbf{c} = 2\mathbf{i} + 7\mathbf{j}$ $\mathbf{r} = (6.5t^2 - 3t + 2)\mathbf{i} + (2t + t^3 + 7)\mathbf{j}$	m1 A1	use of initial conditions ft r
2(b)	$\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$ $= 13\mathbf{i} + 6t\mathbf{j}$	A1	M1 use of differentiation
2(c)	We require $\mathbf{v}.(\mathbf{i} - 2\mathbf{j}) = 0$ $\mathbf{v}.(\mathbf{i} - 2\mathbf{j}) = (13t - 3) - 2(2 + 3t^2)$ $= -6t^2 + 13t - 7$ $6t^2 - 13t + 7 = 0$	M1 M1 A1	used allow sign errors any form
	(6t-7)(t-1) = 0	m1	method for quad equation Depends on both M's
		A 1	

A1

t = 1, 7/6

© WJEC CBAC Ltd.

Q	Solution	Mark	Notes
3(a)(i)	Initial horizontal speed = $15\cos\alpha$ = 15×0.8 = 12 ms^{-1}	B1	
	Time of flight = $9/12$ = $0.75s$	M1 A1	any correct form
	- 0.738	AI	any correct form
3(a)(ii) Initial vertical speed = $15 \sin \alpha$ = 15×0.6 = 9 ms^{-1}	B1	
	Use of s = ut + 0.5at ² , u=9(c), a=(±)9.8, t=0.75(c) s = $9 \times 0.75 - 0.5 \times 9.8 \times 0.75^{2}$	M1	
	s = 3.99375 m	A1	si
	Height of B above ground = 4.99375 m	A1	ft s
3(b)	use of $v^2 = u^2 + 2as$, u=9, a=(±)9.8, s=-1 $v^2 = 9^2 + 2(-9.8)(-1)$ $v^2 = 100.6$	M1 A1	allow sign errors
	$u_{\rm H} = 12$	B1	ft candidate's value
	Speed = $\sqrt{12^2 + 100.6}$ Speed = <u>15.64 ms⁻¹</u>	m1 A1	cao

Q	Solution	Mark	Notes
4(a)	Resolve vertically	M1	dim correct
	$Rsin\theta = Mg$	A1	
	$\sin\theta = \frac{3}{5}$	B1	
	$R = Mg \times \frac{5}{3}$		
	R = 5Mg/3	A1	answer given, convincing.
4(b)	N2L towards centre	M1	dim correct
	$\mathbf{R}\mathbf{cos}\mathbf{\theta} = \mathbf{M}\mathbf{a}$	A1	
	$\frac{5Mg}{3} \times \frac{4}{5} = M \times \frac{8g}{3r}$		
	CP = r = 2	A1	
	Height 4		
	$\frac{\text{Height}}{r} = \frac{4}{3}$	M1	use of similar triangles
	Height = $\frac{8}{3}$ m	A1	ft candidate's r if first M1
	5		given.

Q	Solution	Mark	Notes
5(a)	0 < <i>t</i> < 6	B1 B1	
5(b)	Distance t = 6 to t = 9 = $\int_{6}^{9} 2t^2 - 12t dt$	M1	use of integration Limits not required
	Distance = $[2t^3/3 - 6t^2]_6^9$ = 72	A1	correct integration
	Distance $t = 0$ to $t = 6 = -\int_0^6 2t^2 - 12t dt$ Distance $= -[2t^3/3 - 6t^2]_0^6$ = -[-72] = 72	A1	or for the other integral
	Required distance = $72 + 72$ = $\underline{144}$	m1 A1	cao

	Q	Solution	Mark	Notes
_	6(a)	$T = P/v$ $T = \frac{60 \times 1000}{20}$	M1	used
		$T = \frac{20}{3000 \text{ N}}$	A1	
	6(b)	Apply N2L to car and trailer	M1	dim correct equation All forces present
		$T - (1500 + 500)gsin\alpha - (170 + 30) = 2000a$	A2	-1 each error
		$3000 - 2000 \times 9.8 \times \frac{1}{14} - 200 = 2000a$		
		$a = 0.7 \text{ ms}^{-2}$	A1	convincing
	$\mathcal{E}(\mathbf{a})$	NOI applied to trailer	NJ 1	dim compate all formers
	6(c)	N2L applied to trailer T – 500gsin α -30 = 500a	M1 A2	dim correct, all forces -1 each error
		$T = 500 \times 9.8 \times \frac{1}{14} + 30 + 500 \times 0.7$		
		T = 730 N	A1	
		OR		
		N2L applied to car 2000 ± 1500 gains $170 \pm 7 \pm 1500 \times 0.7$	(M1)	dim correct, all forces
		$3000 - 1500gsin\alpha - 170 - T = 1500 \times 0.7$ $T = 3000 - 1500 \times 9.8 \times \frac{1}{14} - 170 - 1500 \times 0.7$	(A2)	-1 each error
			(A 1)	
		$T = \underline{730 N}$	(A1)	

Q	Solution	Mark	Notes
7(a)	PE at start = $-2 \times 9.8 \times 0.7$	M1 A1	mgh used allow 0.7, (1.2+x), (0.5+x), 1.2, 0.5, x.
	= -13.72 J PE at end = $-2 \times 9.8 \times (1.2 + x)$ = $-23.52 - 19.6x$		
	EE at end = $\frac{1}{2} \times \frac{360}{1 \cdot 2} x^2$	M1	use of formula
	EE at end = $150x^2$	A1	
	Conservation of energy $150x^2 - 19.6x - 23.52 = -13.72$ $150x^2 - 19.6x - 9.8 = 0$	M1 A1	equation, all energies correct equation any form
	x = 0.33	A1	cao
7(b)	KE at end = $0.5 \times 2v^2$ = v^2	B1	
	PE at end = $-2 \times 9.8 \times 1.2$ = -23.52		
	Conservation of energy $v^2 - 23.52 = -13.72$ $v^2 = 9.8$	M1 A1	equation, no EE correct equation, any form
	v = 9.0 $v = 3.13 \text{ ms}^{-1}$	A1	

Q	Solution	Mark	Notes
8(a)	Conservation of energy $0.5\text{mu}^2 + \text{mgrcos}\alpha = 0.5\text{mv}^2 + \text{mgrcos}\theta$ $0.5 \times 3 \times 5^2 + 3 \times 9.8 \times 4 \times 0.8 =$ $0.5 \times 3 \times v^2 + 3 \times 9.8 \times 4 \times \cos\theta$	M1 A1 A1	equation required KE PE
	$75 + 188.16 = 3v^{2} + 235.2\cos\theta$ $v^{2} = 87.72 - 78.4\cos\theta$ $v = \sqrt{(87.72 - 78.4\cos\theta)}$	A1	сао
8(b)	N2L towards centre mgcos θ - R = ma R = 3 × 9.8cos θ - $\frac{3}{4}$ (87.72 - 78.4cos θ) R = 29.4cos θ - 65.79 + 58.8cos θ R = 88.2cos θ - 65.79	M1 A1 m1	dim correct, all forces substitute, v ² /r

Q	Solution	Mark	Notes
1(a)(i)	Apply N2L to particle ma = $-mg - 3v$ $2\frac{dv}{dt} = -19.6 - v$	M1 A1	dim correct equation
1(a)(ii	$\int \frac{2\mathrm{d}v}{19.6+v} = -\int \mathrm{d}t$	M1	sep. of variables
	$2\ln 19.6 + v = -t + (C)$	A1	correct integration
	t = 0, v = 24.5	m1	use of initial conditions
	$C = 2\ln 44.1 $	A1	ft no 2,1/2.
	$-t = 2\ln\left \frac{19.6 + v}{44.1}\right $		
	$e^{-t/2} = \frac{19.6 + v}{14.1 + v}$	m1	inversion ln to e
	$e^{-t/2} = \frac{19.6 + v}{44.1}$ <u>v = 44.1 e^{-t/2} - 19.6</u>	A1	cao
1(b)	At maximum height, $v = 0$ $t = -2\ln \left \frac{19.6}{44.1} \right $	M1	si
	$ 44.1 = 2\ln(2.25) = 1.62 \text{ s}$	A1	ft similar expression
1(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 44.1 \ \mathrm{e}^{-t/2} - 19.6$	M1	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$ used
	$x = -88.2 e^{-t/2} - 19.6t (+ C)$ When $t = 0, x = 0$ C = 88.2	A1 m1	ft correct integration use of initial conditions
	C = 88.2 $x = \underline{88.2 - 88.2 e^{-t/2} - 19.6t}$	A1	ft one slip

Q	Solution	Mark	Notes
2(a)	Amplitude $a = 0.5$	B1	
2(b)	Period = $\frac{2\pi}{\omega} = 2$	M1	si
	$\omega = \pi$ Maximum acceleration $= a\omega^2 = 0.5 \times \pi^2$ Occurs at end points of motion	A1 B1 B1	ft amplitude <i>a</i> .
2(c)	Let $x = a\cos(\omega t)$ $-0.25 = 0.5\cos(\pi t)$ $\cos(\pi t) = -0.5$ $\pi t = \frac{2\pi}{3}$	M1 m1	
	$t = \frac{2}{3}$	A1	cao
2(d)	$v^{2} = \omega^{2}(a^{2} - x^{2}), x = 0.3, \omega = \pi$ $v^{2} = \pi^{2}(0.5^{2} - 0.3^{2})$ $v^{2} = \pi^{2} \times 0.4^{2}$ $v = (\pm)0.4\pi$	M1 A1	ft
	speed = 0.4π	A1	cao

Q	Solution	Mark	Notes
3(a)(i)	Apply N2L to P 2a = -8x - 10v $\frac{d^2x}{dt^2} = -4x - 5\frac{dx}{dt}$	M1 A1	
3(a)(ii	$) \frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = 0$ Auxiliary equation m ² + 5m +4 = 0 (m + 4)(m + 1) = 0	B1	
	$m = -4, -1$ $CF \qquad x = Ae^{-t} + Be^{-4t}$	B1 B1	ft values of roots
	When $t = 0$, $x = 2$, $\frac{dx}{dt} = 3$ 2 = A + B	M1	use of initial conditions
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -A\mathrm{e}^{-t} - 4 B\mathrm{e}^{-4t}$	B1	
	$\begin{array}{rcl} dt \\ 3 &= -A - 4B \end{array}$	A1	both equations correct
	Adding $5 = -3B$	m1	solving simultaneously
	$B = -\frac{5}{3}$ $A = 2 + -\frac{5}{3} = \frac{11}{3}$		
	$x = \frac{11}{3} e^{-t} - \frac{5}{3} e^{-4t}$	A1	cao
3(b)	$Try x = at + b$ $\frac{dx}{dt} = a$	M1	
	$ \begin{array}{rcl} & & & \\ & 5a + 4(at + b) &=& 12t - 3 \\ & 4a &=& 12 \\ & a &=& 3 \end{array} $	A1 m1	comparing coefficients
	5a + 4b = -3 15 + 4b = -3 4b = -18 $b = -\frac{9}{2}$		
	General solution $x = Ae^{-t} + Be^{-4t} + 3t - \frac{9}{2}$	A1	cao

Q	Solution	Mark	Notes
4	Initial speed of A just before impact = v		
-	$v^2 = u^2 + 2as, u=0, a=(\pm)9.8, s = (1.8-0.2)$	M1	
	$v^2 = 0 + 2 \times 9.8 \times 1.6$	A1	
	$v = 5.6 \text{ ms}^{-1}$	A1	cao
	Impulse = Change in momentum Applied to B	M1	used
	J = 3v	B 1	
	Applied to A		
	$J = 5 \times 5.6 - 5v$	A1	ft c's answer in (a)
	Solving		
	3v = 28 - 5v	m1	
	8v = 28		
	$v = 3.5 \text{ ms}^{-1}$	A1	cao
	$J = \underline{10.5 \text{ Ns}}$	A1	cao

Q	Solution	Mark	Notes
5(a)	N2L applied to particle		
	$0.25 \ a = \frac{5}{2x+1}$	M1	
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{20}{2x+1}$	M1	$a = v \frac{\mathrm{d}v}{\mathrm{d}x}$
	$\int v \mathrm{d}v = 10 \int \frac{2}{2x+1} \mathrm{d}x$	M1	separating variables
	$\frac{1}{2}v^2 = 10\ln 2x+1 + C$	A1	correct integration ln
	When $x = 0, v = 4$	A1 m1	LHS correct use of boundary cond. All 3 M's awarded
	$8 = 10 \ln(1) + C$ C = 8		
	$v^{2} = 20 \ln 2x+1 + 16$		
	$\ln 2x+1 = \frac{1}{20}(v^2 - 16)$		
	$2x + 1 = e^{0.05(v^2 - 1.6)}$ x = 0.5(e^{0.05(v^2 - 1.6)} - 1)	m1 A1	inversion, 3 M's awarded cao any equivalent exp.
	x = 0.5(c - 1)	711	eao any equivalent exp.
5(b)	v = 6 $x = 0.5(e^{0.05(36 - 16)} - 1)$ x = 0.5(e - 1)	M1	exp. with v^2 needed
	x = 0.86 m	A1	cao
	-		
5(c)	$a = 5$ $\frac{20}{2x+1} = 5$	M1	
	20 = 10x + 5 x = 1.5	A1	
	$v^2 = 20\ln(3+1) + 16$	m1	substitution in expression with v^2 .
	$= 20 \ln 4 + 16$ v = <u>6.61 ms⁻¹</u>	A1	cao

Resolve horizontally $T\cos\theta = X$

$$X = \frac{35}{4} g \times \frac{4}{5}$$

X = 7g = 68.6 N

6(b)(i) Magnitude of reaction at wall

$$= \sqrt{68 \cdot 6^{2} + 36 \cdot 75^{2}}$$

= 77.82 N
6(b)(ii) $\mu = \frac{Y}{X}$
 $\mu = \frac{15}{4 \times 7} = \frac{15}{28}$

M1 A1 ft X and Y M1 used

cao

equation, all forces,

No extra force

M1

A1

A1 ft *X* and *Y* if answer<1.

Ques	Solution	Mark	Notes
1(a)	$P(A \cup B) = P(A) + P(B)$	M1	Award M1 for using formula
	P(B) = 0.4 - 0.25 = 0.15	A1	_
(b)	$P(A \cup B) = P(A) + P(B) - P(A)P(B)$	M1	Award M1 for using formula
	0.4 = 0.25 + P(B) - 0.25P(B)	A1	
	P(B) = 0.15/0.75 = 0.2	A1	
2(a)			
	P(1 of each) =		
	$\frac{5}{10} \times \frac{3}{9} \times \frac{2}{8} \times 6 \text{ or } \begin{pmatrix} 5\\1 \end{pmatrix} \times \begin{pmatrix} 3\\1 \end{pmatrix} \times \begin{pmatrix} 2\\1 \end{pmatrix} \div \begin{pmatrix} 10\\3 \end{pmatrix}$	M1A1	M1A0A0 if 6 omitted
	$\frac{10}{10} \times \frac{10}{9} \times \frac{10}{8} \times \frac{10}{10} \times \frac{10}{$		Special case : if they use an
	1	4.1	incorrect total, eg 9 or 11, FT
	$=\frac{1}{4}$	A1	their incorrect total but subtract
	•		2 marks at the end
(b)	P(3 war) = $\frac{5}{10} \times \frac{4}{9} \times \frac{3}{8}$ or $\binom{5}{3} \div \binom{10}{3}$	M1	
	$10 \ 9 \ 8 \ (3) \ (3)$		
	_ 1	A1	
	$=\frac{1}{12}$		
(c)	3 2 1 (3) (10)		
(0)	P(3 cowboy) = $\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8}$ or $\begin{pmatrix} 3\\ 3 \end{pmatrix} \div \begin{pmatrix} 10\\ 3 \end{pmatrix}$		
		B1	
	$=\frac{1}{120}$	DI	
	120		
	P(3 the same) = $\frac{1}{12} + \frac{1}{120} = \frac{11}{120}$	M1A1	ET mariana valuas
	12 120 120		FT previous values
3	E(X) = 20	B1	
C	Var(X) = 4 (SD = 2)	B1	
	E(Y) = 20a + b = 65	B1	
	$Var(Y) = 4a^2 = 36$	B1	Accept $SD(Y) = 2a = 6$
	a = 3	B1	Must be justified by solving the
	a = 5 b = 5	B1	two equations
4(a)(i)	B(20,0.25)	B1	B must be mentioned and the
(ii)	$P(3 \le X \le 9) = 0.9087 - 0.0139 \text{ or } 0.9861 - 0.0913$	B1B1	parameters n and p must be seen
	= 0.8948	B1	or implied somewhere in the
(iii)	(20)		question
	$P(X=6) = \binom{20}{6} \times 0.25^6 \times 0.75^{14}$	M1	\hat{FT} an incorrect <i>p</i> except for the
	= 0.169		last three marks
	= 0.169	A1	M0 if no working seen
(b)(i)	Let <i>Y</i> denote the number of throws giving '8'		
	Then Y is B(160,0.0625) \approx Poi(10).	B 1	
		DI	
	$P(Y = 12) = e^{-10} \times \frac{10^{12}}{12!}$	M1	MO if no working soon
	12! _ 0.0049		M0 if no working seen
(ii)	= 0.0948	A1	Accept the use of tables
	$P(6 \le Y \le 14) = 0.9165 - 0.0671 \text{ or } 0.9329 - 0.0835$	B1B1	Correct values only (no FT)
	= 0.8494 cao	B1	

© WJEC CBAC Ltd.

5 (a)	$P(1) = \frac{1}{3} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2}$	M1A1	M1 Use of Law of Total Prob
	515552		(Accept tree diagram)
	$=\frac{13}{36}$ (0.361)	A1	
(b)	$P(A 1) = \frac{1/12}{13/36}$ $= \frac{3}{13} \text{ cao} (0.231)$	B1B1 B1	FT denominator from (a) B1 num, B1 denom
6(a)	The sequence is MMMH si	B1	
	$Prob = 0.3 \times 0.3 \times 0.3 \times 0.7 = 0.0189$	M1A1 B1	
(b)	The sequence is MHH or HMH si Prob = $0.3 \times 0.7 \times 0.7 + 0.7 \times 0.3 \times 0.7 = 0.294$	M1A1	Award B1 for 0.147
7(a)	$\sum p_x = k \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) = 1$	M1	
	$k\left(\frac{8+4+2+1}{8}\right) = 1 \longrightarrow k = \frac{8}{15}$	A1	Convincing
(b)			
	$E(X) = \frac{8}{15} \times 1 + \frac{4}{15} \times 2 + \frac{2}{15} \times 4 + \frac{1}{15} \times 8$	M1	
	$=\frac{32}{15}$ (2.13)	A1	
	13		
	$E(X^{2}) = \frac{8}{15} \times 1 + \frac{4}{15} \times 4 + \frac{2}{15} \times 16 + \frac{1}{15} \times 64 (8)$	M1A1	
(c)(i)	Var(X) = $8 - \left(\frac{32}{15}\right)^2 = 3.45$ (776/225)	A1	Accept 3.46
	The possibilities are $(1,1)$; $(2,2)$; $(4,4)$; $(8,8)$ si	B1	
	$P(X_1 = X_2) = \left(\frac{8}{15}\right)^2 + \left(\frac{4}{15}\right)^2 + \left(\frac{2}{15}\right)^2 + \left(\frac{1}{15}\right)^2$	M1	
(ii)	$=\frac{17}{45}$ (0.378)	A1	
	It follows that $P(X_1 \neq X_2) = \frac{28}{45}$	M1	FT their answer from (c)(i)
	And therefore by symmetry $P(X_1 > X_2) = \frac{14}{45}$	A1	Do not accept any other method.

8 (a)	Let <i>X</i> denote the number of calls between 9am and		
	10 am so that X is $Po(5)$	B1	
	$P(X=7) = \frac{e^{-5} \times 5^7}{7!}$	M1	M0 no working
	= 0.104	A1	E E
(b)	We require		
	P(calls betw 9 and 10=7 calls betw 9 and 11=10) P(a + 0 and 10 = 7 A ND a + 0 and 11 = 10)	N/1	
	$= \frac{P(c b 9 and 10 = 7 ANDc b 9 and 11 = 10)}{P(calls between 9 and 11 = 10)}$	M1	
	$= \frac{P(c b 9 and 10 = 7) \times P(c b 10 and 11 = 3)}{P(calls between 9 and 11 = 10)}$	A1	
	$= \frac{e^{-5} \times 5^7}{7!} \times \frac{e^{-5} \times 5^3}{3!} \div \frac{e^{-10} \times 10^{10}}{10!} (\text{denom} = 0.125)$	A1A1	A1 numerator, A1 denominator
	7! $3!$ $10!$	A1	The denominator A1 can be awarded if the M1 is awarded
		AI	awarded if the WIT is awarded
9(a)	$\int_{-\infty}^{2} k \left(1 - \frac{x^2}{4} \right) dx = 1$	рл1	
	$\int_{0}^{K} \left(1 - \frac{1}{4}\right) dx = 1$	M1	M1 for $\int f(x) dx$, limits not
	$k\left[x-\frac{x^3}{12}\right]^2 = 1$	A1	required until next line
	$\kappa \left[x - \frac{12}{12} \right]_0 = 1$		
	$k\left(2-\frac{8}{12}\right)=1$	A1	
	$k = \frac{3}{4}$		
(b)	$\kappa = -\frac{1}{4}$		
(0)	$E(X) = \int_{0}^{2} x(\frac{3}{4} - \frac{3x^{2}}{16}) dx$	M1A1	M1 for the integral of $xf(x)$, A1
	0	A1	for completely correct although limits may be left until 2 nd line.
	$= \left[\frac{3x^2}{8} - \frac{3x^4}{64}\right]_0^2$		
		A1	
(c)(i)	= 0.75	M1	
	$F(x) = \int_{0}^{x} (\frac{3}{4} - \frac{3t^{2}}{16}) dt$	M1	M1 for $\int f(x) dx$
	$= \left[\frac{3t}{4} - \frac{t^3}{16}\right]_0^x$	A1	A1 for performing the integration
	$-\left\lfloor \frac{-4}{4} - \frac{-16}{16} \right\rfloor_0$		Integration
	$=\frac{3x}{4}-\frac{x^{3}}{16}$	A1	A1 for dealing with the limits
(ii)		M1	FT their $F(\mathbf{x})$
	$P(0.5 \le X \le 1.5) = F(1.5) - F(0.5)$ = 0.547	A1	

Ques	Solution	Mark	Notes
1(a)(i)	$z = \frac{10.5 - 10}{2} = 0.25$ $P(X \le 10.5) = 0.5987$	M1A1 A1	M0 for 2^2 or $\sqrt{2}$ M1A0 for – 0.25 if final answer incorrect
(ii)	$\Gamma(X \ge 10.5) = 0.5987$	AI	M0 no working
	$x = \frac{x - \mu}{\sigma} = 1.282$ $= 12.564$	M1 A1	M1 for 2.326, 1.645, 2.576 Accept 12.6
(b)(i)	E(X + 2Y) = 34	B1	
	Var(X + 2Y) = Var(X) + 4Var(Y) $= 40$	B1	
	We require P(X + 2Y < 36) $z = \frac{36 - 34}{\sqrt{40}} = 0.32$	M1A1	FT their mean and variance M0 no working
(ii)	Prob = 0.6255	A1	WO NO WORKING
	Consider $U = X_1 + X_2 + X_3 - Y_1 - Y_2$ E(U) = 3 × 10 - 2 × 12 = 6	B1	
	$Var(U) = 3 \times 4 + 2 \times 9 = 30$ We require P(U < 0)	M1A1	
	$z = \frac{0-6}{\sqrt{30}} = -1.10$	m1A1	Do not FT their mean and variance
	Prob = 0.136	A1	
2(a)	$\bar{x} = \frac{9980}{50}$ (= 199.6)	B1	
	SE of $\overline{X} = \frac{4}{\sqrt{50}}$ (= 0.5656)	B1	
	95% conf limits are 199.6 ± 1.96 × 0.5656	M1A1	M1 correct form, A1 correct <i>z</i> .
	giving [198.5, 200.7] cao	A1	M0 no working
(b)	Width of 95% CI = $3.92 \times \frac{4}{\sqrt{n}}$ si	B1	FT their <i>z</i> from (a)
	We require $3.92 \times \frac{4}{\sqrt{n}} < 1$ n > 245.86 Minimum $n = 246$	M1 A1 A1	Award M1A0A0 for 1.96 instead of 3.92 FT from line above if $n > 50$

3 (a)	$H_0: \mu_B = \mu_G; H_1: \mu_B \neq \mu_G$	B1	
(b)	$\bar{x}_B = \frac{482}{8} = 60.25; \bar{x}_G = \frac{430}{8} = 53.75$	B1B1	
	SE of diff of means= $\sqrt{\frac{7.5^2}{8} + \frac{7.5^2}{8}}$ (3.75)	M1A1	
	Test statistic (z) = $\frac{60.25 - 53.75}{3.75}$	m1A1	
	= 1.73 Prob from tables = 0.0418 <i>p</i> -value = 0.0836 Insufficient evidence to conclude that there is a difference in performance between how and girls	A1 A1 B1 B1	FT their z if M marks gained FT on line above
	difference in performance between boys and girls.	DI	FT their <i>p</i> -value
4(a)	$H_0: p = 0.4; H_1: p > 0.4$	B1	
(b)	Let $X =$ No. supporting politician so that X is B(50,0.4) (under H ₀) si p -value = P($X \ge 25 X$ is B(50,0.4)) = 0.0978 Insufficient evidence to conclude that the support	B1 M1 A1	M0 for $P(X = 25)$ or $P(X > 25)$ M0 normal or Poisson approx
	is greater than 40%.	B1	FT on p-value
(c)	X is now B(400,0.4) (under H ₀) \approx N(160,96) p -value = P(X \ge 181 X is N(160,96)) 180.5 - 160	B1 M1	
	$z = \frac{180.5 - 160}{\sqrt{96}}$	m1A1	Award m1A0A1A1 for incorrect
	= 2.09 <i>p</i> -value = 0.0183 Strong evidence to conclude that the support is	A1 A1	or no continuity correction $181.5 \rightarrow z = 2.19 \rightarrow p = 0.01426$ $181 \rightarrow z = 2.14 \rightarrow p = 0.01618$
	greater than 40%.	B 1	FT on p-value
5(a)	$H_0: \mu = 1.2: H_1: \mu < 1.2$	B1	Must be μ
(b)(i)	Let X = number of accidents in 60 days Then X is Poi(72) (under H ₀) \approx N(72,72) si	B1	
	Sig level = P(X ≤ 58 H ₀) $z = \frac{58.5 - 72}{\sqrt{72}}$	M1 m1A1	Award m1A0A1A1 for incorrect or no continuity correction
(ii)	= -1.59 Sig level = 0.0559 X is now Poi(48) which is approx N(48,48) si P(wrong conclusion) = P(X > 50 w = 0.8)	A1 A1 B1 M1	$57.5 \rightarrow z = -1.71 \rightarrow p = 0.0436$ $58 \rightarrow z = -1.65 \rightarrow p = 0.0495$
	P(wrong conclusion) = P(X \ge 59 \mu = 0.8) $z = \frac{58.5 - 48}{\sqrt{48}}$ = 1.52	m1A1 A1	Award m1A0A1A1 for incorrect or no continuity correction $59.5 \rightarrow z = 1.66 \rightarrow p = 0.0485$
	P(wrong conclusion) = 0.0643	A1	$59 \rightarrow z = 1.59 \rightarrow p = 0.0559$

6(a)(i)	$\mathrm{E}(C) = 2\pi\mathrm{E}(R)$	M1	
U(d)(l)	$E(C) = 2\pi E(R)$ = $2\pi \times 7 = 14\pi$ (43.98)	A1	Accept the use of integration,
	$Var(C) = 4\pi^2 Var(R)$	M1	M1 for a correct integral and A1
			for the correct answer
	$=\frac{4\pi^2}{3}$ (13.16)	A1	
(ii)	5		
, í	$P(C \le 45) = P(R \le 45/2\pi)$	M1	
	$=\frac{(45/2\pi-6)}{8-6}$	A1	
		A1	
	= 0.581	AI	
(b)(i)	$A = \pi R^2$		
	$P(A \ge 150) = P\left(R \ge \sqrt{150/\pi}\right)$	M1A1	
	$=\frac{8-\sqrt{150/\pi}}{8-6}$	A1	
(••)	8 - 6 = 0.545		
(ii)	EITHER	A1	
	$\mathbf{E}(A) = \int_{C}^{8} \pi r^2 \times \frac{1}{2} \mathrm{d}r$	M1	
	\int_{6} 2	IVII	
	π [3] ⁸	A1	
	$=rac{\pi}{6}[r^3]_6^8$		
	148π	A1	
	$=\frac{148\pi}{3}$ (155)		
	OR		
	$E(A) = \pi E(R^2) = \pi (var(R) + (E(R))^2)$	M1	
	$=\pi\left(\frac{1}{3}+7^2\right)$	A1	
	$=\frac{148\pi}{3}$ (155)	A1	
	3		

Ques	Solution	Mark	Notes
1	$\hat{p} = 0.29$ si	B1	
	$ESE = \sqrt{\frac{0.29 \times 0.71}{300}} \ (= 0.02619) \qquad si$	M1A1	
	95% confidence limits are $0.29 \pm 1.96 \times 0.02619$ giving [0.24,0.34]	m1A1 A1	m1 correct form, A1 1.96
	giving [0.24,0.54]		
2	The possibilities are <u>3 red, 1 blue for which $X - Y = 2$</u> Therefore,		
	$P(X - Y = 2) = \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} \times \frac{7}{7} \times 4 \text{ OR } \frac{\binom{3}{3} \times \binom{7}{1}}{\binom{10}{4}}$	M1A1	
	$=\frac{1}{30}$	A1	
	<u>2 red, 2 blue for which $X - Y = 0$</u> (3) (7)		
	$P(X - Y = 0) = \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} \times \frac{6}{7} \times 6 \text{ OR } \frac{\binom{3}{2} \times \binom{7}{2}}{\binom{10}{4}}$		
	$=\frac{3}{10}$	B1	
	<u>1 red, 3 blue for which $X - Y = 2$</u> $\binom{3}{\times} \binom{7}{7}$		
	$P(X - Y = -2) = \frac{3}{10} \times \frac{7}{9} \times \frac{6}{8} \times \frac{5}{7} \times 4 \text{ OR } \frac{\binom{5}{1} \times \binom{7}{3}}{\binom{10}{4}}$		
	$=\frac{1}{2}$	B1	
	<u>0 red</u> , 4 blue for which $ X - Y = 4$		
	$P(X - Y = -4) = \frac{7}{10} \times \frac{6}{9} \times \frac{5}{8} \times \frac{4}{7} \text{ OR } \frac{\binom{7}{4}}{\binom{10}{4}} = \frac{1}{6}$	B1	FT if found as 1 - Σprobs
	The distribution of $ X - Y $ is therefore $\begin{array}{c c} X - Y & 0 & 2 & 4 \\ \hline Prob & 3/10 & 8/15 & 1/6 \end{array}$	M1A1	FT their probabilities

S3

3 (a)	UE of $\mu = 34.3$	B1	No working need be seen
	$\Sigma x^2 = 10609.43$	B1	
	UE of $\sigma^2 = \frac{10609.43}{8} - \frac{9 \times 34.3^2}{8}$	M1	M0 division by 9
	= 2.6275	A1	Answer only no marks
(b)	DF = 8 si t-value = 1.86	B1	
	90% confidence limits are	B1	
	24.2 + 1.86 2.6275	M1A1	
	$34.3 \pm 1.86 \sqrt{\frac{2.6275}{9}}$		
	giving [33.3,35.3] cao	A1	Answer only no marks
(c)	EITHER		
	Width of interval = $2t\sqrt{\frac{2.6275}{9}} = 3.2$		
		M1 A1	
	So $t = 2.96$ For a 99% confidence interval, $t = 3.355$	B1	
	Since $2.96 < 3.355$, the confidence level is less	A1	
	than 99%		
	OR For 99% confidence interval, $t = 3.355$	B1	
	99% confidence limits are		
	$34.3 \pm 3.355 \sqrt{\frac{2.6275}{9}}$	241	
		M1 A1	
	giving [32.5,36.1] The given confidence interval is narrower than		
	this therefore its confidence level is less than 99%	A1	
4 (a)	2554		
	The 5% critical value = $2000 + 1.645 \times \sqrt{\frac{2331}{120}}$	M1	
	= 2007.6	A1	M1A0 for $-$
	The 10% critical value = $2000 + 1.282 \times \sqrt{\frac{2554}{120}}$		
	V 120	M1	M1A0 for –
	= 2005.9 The required range is therefore	A1	
	(2005.9,2007.6)	A1	
(b)	No because of the Central Limit Theorem	B1	
	AND THEN EITHER which ensures the normality of the sample mean		
	OR	B1	
	which can be used because the sample is large		

5(a) (b)	$H_{0}: \mu_{A} = \mu_{B}; H_{1}: \mu_{A} \neq \mu_{B}$ $\bar{x} = 55.25; \bar{y} = 55.75 \text{si}$ $s_{x}^{2} = \frac{183345}{59} - \frac{3315^{2}}{59 \times 60} = 3.2415$ $s_{y}^{2} = \frac{186651}{59} - \frac{3345^{2}}{59 \times 60} = 2.8347$ [Accept division by 60 giving 3.1875 and 2.7875] $SE = \sqrt{\frac{3.2415}{60} + \frac{2.8347}{60}}$ $= (0.3182, 0.3155) \text{si}$ Test stat = $\frac{55.75 - 55.25}{0.3182}$ $= 1.57 (1.58)$	B1 B1 M1A1 A1 M1 A1 A1 A1 A1 A1	FT 1 error in the means Answer only no marks
	p-value = 0.116 (0.114) cao Insufficient evidence for believing that the mean weights are unequal.	B1	FT their p-value
6(a)	$\sum x = 175, \sum x^2 = 5075, \sum y = 118.1, \sum xy = 3170$ $S_{xy} = 3170 - 175 \times 118.1/7 = 217.5$ $S_{xx} = 5075 - 175^2/7 = 700$ $b = \frac{217.5}{700} = 0.311$ $a = \frac{118.1 - 175 \times 0.311}{7} = 9.10$	B2 B1 B1 M1 A1 M1 A1	Minus 1 each error FT 1 error in sums
(b)	SE of $a = \sqrt{\frac{0.1^2 \times 5075}{7 \times 700}}$ (0.1017) 95% confidence limits for α are 9.10±1.96×0.1017 giving [8.9,9.3]	M1A1 m1A1 A1	FT their value of <i>a</i> M1 correct form, A1 1.96

7(a)	$E(\hat{p}) = \frac{E(X)}{n} = \frac{np}{n} = p$	M1	
	n n Therefore unbiased.	A1	This line need not be seen
	$\operatorname{SE}(\hat{p}) = \sqrt{\frac{\operatorname{Var}(X)}{n^2}} = \sqrt{\frac{np(1-p)}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$	M1 A1	Accept q for $1 - p$
(b)(i)	$\mathrm{E}(\hat{p}^2) = \frac{\mathrm{E}(X^2)}{n^2}$	M1	
	$= \frac{\operatorname{Var}(X) + [\operatorname{E}(X)]^2}{n^2}$	m1	
	$= \frac{n^2}{n^2} = \frac{np(1-p) + n^2p^2}{n^2}$	A1	
	$(=p^2 + \frac{p(1-p)}{p})$		This line need not be seen
(ii)	$\neq p^2$ therefore not unbiased	A1	
	$E[X(X-1)] = E(X^2) - E(X)$	M1	
	$= np(1-p) + n^2p^2 - np$	A1	
	$= n(n-1)p^2$	A1	
	It follows that $\mathbf{Y}(\mathbf{Y} = 1)$		
	$\frac{X(X-1)}{n(n-1)}$	A1	
(c)(i)	is an unbiased estimator for p^2 .		
	EITHER		
	By reversing the interpretation of success and failure, it follows that	M1	
	$\frac{(n-X)(n-X-1)}{(n-X)}$	A1	
	n(n-1)		
	is an unbiased estimator for q^2 .		
	OR 2 4 5 2 4 5 2	M1	
	$q^{2} = (1-p)^{2} = 1 - 2p + p^{2}$		
	Therefore an unbiased estimator for q^2 is 2X X(X-1)	A1	This expression need not be
(ii)	$1 - \frac{2X}{n} + \frac{X(X-1)}{n(n-1)}$	M1	simplified
	Since $pq = p(1-p) = p - p^2$	1911	
	It follows that an unbiased estimator for pq	A1	
	$=\frac{X}{n}-\frac{X(X-1)}{n(n-1)}$		
		A1	
	$=\frac{X(n-X)}{n(n-1)}$		

GCE MATHEMATICS M1-M3 and S1-S3 MS SUMMER 2013

© WJEC CBAC Ltd.

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>