$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

MATHEMATICS - M1-M3 \& S1-S3 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Paper Page
M1 1
M2 9
M3 17
S1 23
S2 26
S3 29
Q Solution Mark Notes

1(a)
B1 $\quad(0,20)$ to $(8,20)$
Or $(18,6)$ to $(40,6)$
B1 $(8,20)$ to $(18,6)$
B1 completely correct with all units and labels.

1(b) Deceleration = gradient of graph
M1 any correct method
D $=\frac{20-6}{18-8}$
$\mathrm{D}=\underline{1.4 \mathrm{~ms}^{-2}}$
A1 ft graph +/-
A1 cao

OR
Use of $v=u+a t, v=6, u=20, t=10$
$6=20+10 \mathrm{a}$
$\mathrm{a}=-1.4 \mathrm{~ms}^{-2}$
Magnitude of acceleration $=\underline{1.4 \mathrm{~ms}^{-2}}$

M1

A1 allow -a
A1 cao

1(c) Distance $\mathrm{AB}=$ Area under graph
$=(8 \times 20)+0.5(20+6) \times 10+(22 \times 6)$
$=160+130+132$
$=\underline{422 \mathrm{~m}}$

M1 used. Oe
B1 any correct area, ft graph
A1 cao

2(a)

N2L applied to lift and person
$(M+64) g-7500=(M+64) \times 0.425$
$M=\underline{736}$

M1 dim correct equation, forces opposing
A1 correct equation A1

2(b)
N2L applied to person
M1 $\quad 64 g$ and R opposing Dim correct equation
$64 g-R=64 a$
A1 correct equation
$R=64 \times 9.8-64 \times 0.425$
$R=\underline{600} \mathrm{~N}$
A1

3(a) $\begin{array}{rlrl}v^{2} & =u^{2}+2 a s, v=0, a=(\pm) 9.8, s=18.225 & & \text { M1 } \\ & \text { oe used } \\ 0 & =u^{2}-2 \times 9.8 \times 18.225 & & \text { A1 }\end{array}$

3(b) Use of $s=u t+0.5 a t^{2}, s=(\pm) 2.8, a=(\pm) 9.8$, $u=18.9 \quad 1$
$-2.8=18.9 t+0.5 \times(-9.8) t^{2}$
$4.9 t^{2}-18.9 t-2.8=0$
$7 t^{2}-27 t-4=0$
$(7 t+1)(t-4)=0 \quad \mathrm{ml}$ correct method for
$t=\underline{4 \mathrm{~s}}$

M1 oe
A1 solving quad equ seen
A1 cao

4
4(a) N2L applied to B
$5 g-T=5 a$
M1 dim correct equation 5 g and T opposing.
$T=5 \times 9.8-5 \times 1.61$
$T=\underline{40.95 \mathrm{~N}}$
$R=9 g=(88.2 \mathrm{~N})$
$F=9 \mu g=(88.2 \mu)$
N 2 L applied to A
$T-F=9 \mathrm{a}$
$T-88.2 \mu=9 \times 1.61$
$\mu=\underline{0.3}$
A1
A1 cao
B1 si
B1 si
M1 dim correct equation
T and F opposing
A1
A1 cao

4(b) limiting friction $=9 \mu g=9 \times 0.6 \mathrm{~g}=5.4 \mathrm{~g}$
B1
Limiting friction $>5 g$
Particle will remain at rest
$T=5 g=\underline{49 \mathrm{~N}}$
R1 oe
B1

5
5(a)(i) Resolve vertically
$R+84=12 \mathrm{~g}$
$R=\underline{33.6}$

5(a)(ii) Moments about C

$$
\begin{aligned}
& 12 g \times 0.2=84(\mathrm{x}-0.8) \\
& 84 x=12 \mathrm{~g} \times 0.2+84 \times 0.8 \\
& x=\underline{1.08}
\end{aligned}
$$

5(b) When about to tilt about $C, R_{D}=0$
Moments about C
$M g \times 0.8=12 g \times 0.2$
$M=\underline{3}$

M1 all forces, no extras
A1
A1 cao

M1 equation, no extra force oe
B1 any correct moment
A1 correct equation
A1 cao

M1 si
m1 equation, no extra force
A1

6.

6(a) Conservation of momentum
$2 u+5 \times 0=2 \times(-2)+5 \times 3$
$u=\underline{5.5}$

6(b) Restitution
$3-(-2)=-e(0-5.5)$
$e=\frac{10}{11}=0.909$

6(c) Impulse $=$ change of momentum
$I=5(3-0)$
$I=\underline{15(\mathrm{Ns})}$

6(d) $v^{\prime}=e v$
$v^{\prime}=0.25 \times 3$
$v^{\prime}=\underline{0.75 \mathrm{~ms}^{-1}}$

M1 equation required, only 1 sign error.
A1 correct equation
A1

M1 only 1 sign error
A1 $\mathrm{ft} u$
A1 cao

M1 \quad for P or Q
A1 + required

M1 used
A1 + required
7.(a) Resolve
$X=85-40+75 \cos \alpha$
$X=85-40+75 \times 0.8$
$X=105$
Resolve
$Y=60-75 \sin \alpha$
$Y=60-75 \times 0.6$
$Y=15$
$R=\sqrt{105^{2}+15^{2}}$
$R=75 \sqrt{ } 2=\underline{106.066} \mathrm{~N}$
$\theta=\tan ^{-1}\left(\frac{15}{105}\right)$
$\theta=\underline{8.13^{\circ}}$

7(b) N2L applied to particle
$75 \sqrt{ } 2=5 a$
$\mathrm{a}=15 \sqrt{ } 2=\underline{21.21 \mathrm{~ms}^{-2}}$

M1 attempted
B1 any correct resolution
A1 all correct accept $\cos 36.9$

M1 attempted
A1 all correct, accept $\sin 36.9$

M1
A1 cao

M1 allow reciprocal
A1 cao

M1 dim correct equation
A1 $\quad \mathrm{ft} R$ if first 2 M's gained.

Q	Solution				Mark	Notes
8.		Area fid	from $A D$	from $A B$		
	APCD	48	3	4	B1	
	PBC	24	8	8/3	B1	
	Circle	4π	3	3	B1	
	Lamina	(72-4 π)) x	y	B1	areas
8(a)	Moments about $A D$				M1	equation
	$\begin{aligned} & 48 \times 3+24 \times 8=4 \pi \times 3+(72-4 \pi) x \\ & x=\underline{5.02 \mathrm{~cm}} \end{aligned}$				A1	ft table
					A1	cao
	Moments about $A B$				M1	equation
	$48 \times 4+24 \times 8 / 3=4 \pi \times 3+(72-4 \pi) y$				A1	ft table
	$y=\underline{3.67 \mathrm{~cm}}$				A1	cao
8(b)	$A Q=\underline{3.67 \mathrm{~cm}}$				B1	ft y

Q

1(a) Loss in $\mathrm{KE}=0.5 \mathrm{mv}^{2}$

$$
\begin{array}{lll}
=0.5 \times 8 \times 7^{2} & \text { M1 } & \text { Corr use of KE formula } \\
=\underline{196 \mathrm{~J}} & \text { A1 }
\end{array}
$$

1(b) Work energy principle
$196=\mathrm{F} \times 15$
M1 correct use
A1 ft loss in KE

$$
\begin{aligned}
\mathrm{F} & =\mu \mathrm{R} \\
& =8 \mathrm{~g} \mu=(78.4 \mu)
\end{aligned}
$$

B1
Therefore $196=78.4 \mu \times 15$

$$
\mu=\frac{1}{6}
$$

A1 ft loss in KE. Isw

OR
Use of $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as
$0=7^{2}+2 \mathrm{a} \times 15$
$a=-1.633$
Use $\mathrm{F}=\mathrm{ma}$
$-\mathrm{F}=8 \times-1.633$
$\mathrm{F}=8 \mu \mathrm{~g}$
$\mu=\frac{13 \cdot 067}{8 g}=\frac{1}{6}$
(A1)p

$$
\text { 2(a) } \quad \begin{aligned}
\mathbf{r} & =\int v \mathrm{~d} t \\
\mathbf{r} & =\int(13 t-3) \mathrm{i}+\left(2+3 t^{2}\right) \mathrm{j} \mathrm{~d} t \\
\mathbf{r} & =\left(\frac{13}{2} t^{2}-3 t\right) \mathrm{i}+\left(2 t+t^{3}\right) \mathrm{j}+(\underline{\mathrm{c})}
\end{aligned}
$$

When $\mathrm{t}=0$,
$\mathbf{c}=2 \mathbf{i}+7 \mathbf{j}$
$\mathbf{r}=\left(6.5 \mathrm{t}^{2}-3 \mathrm{t}+2\right) \mathbf{i}+\left(2 \mathrm{t}+\mathrm{t}^{3}+7\right) \mathbf{j}$

2(b) $\quad \mathbf{a}=\frac{\mathrm{d} \nu}{\mathrm{d} t}$
$=13 \mathbf{i}+6 \mathrm{t} \mathbf{j}$

$$
\text { 2(c) } \quad \begin{aligned}
& \text { We require } \mathbf{v} .(\mathbf{i}-2 \mathbf{j})=0 \\
& \\
& \mathbf{v .}(\mathbf{i}-2 \mathbf{j})=(13 \mathrm{t}-3)-2\left(2+3 \mathrm{t}^{2}\right) \\
& \quad=-6 \mathrm{t}^{2}+13 \mathrm{t}-7 \\
& 6 \mathrm{t}^{2}-13 \mathrm{t}+7=0 \\
& (6 \mathrm{t}-7)(\mathrm{t}-1)=0 \\
& \mathrm{t}=\underline{1,7 / 6}
\end{aligned}
$$

M1 use of integration

A1 A1 one for each coefficient
m1 use of initial conditions
A1 $\mathrm{ft} \mathbf{r}$

M1 use of differentiation
A1

M1 used
M1 allow sign errors
A1 any form
m1 method for quad equation
Depends on both M's

A1

3(a)(i) Initial horizontal speed $=15 \cos \alpha$

B1

$$
\begin{aligned}
& =15 \times 0.8 \\
& =12 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\text { Time of flight }=9 / 12
$$

$$
=\underline{0.75 \mathrm{~s}}
$$

A1 any correct form

3(a)(ii) Initial vertical speed $=15 \sin \alpha$
B1

$$
\begin{aligned}
& =15 \times 0.6 \\
& =9 \mathrm{~ms}^{-1}
\end{aligned}
$$

Use of $s=u t+0.5 \mathrm{at}^{2}, \mathrm{u}=9(\mathrm{c}), \mathrm{a}=(\pm) 9.8$,

$$
\mathrm{t}=0.75(\mathrm{c})
$$

M1
$\mathrm{s}=9 \times 0.75-0.5 \times 9.8 \times 0.75^{2}$
$\mathrm{s}=3.99375 \mathrm{~m}$
Height of B above ground $=\underline{4.99375 \mathrm{~m}}$
A1 si
A1 ft s

3(b) use of $v^{2}=u^{2}+2$ as, $u=9, a=(\pm) 9.8, s=-1$
M1 allow sign errors
$\mathrm{v}^{2}=9^{2}+2(-9.8)(-1)$
$\mathrm{v}^{2}=100.6$
$\mathrm{u}_{\mathrm{H}}=12$
B1 ft candidate's value
Speed $=\sqrt{12^{2}+100.6}$
m1
Speed $=\underline{15.64 \mathrm{~ms}^{-1}}$

4(a) Resolve vertically
$R \sin \theta=M g$
$\sin \theta=\frac{3}{5}$
$R=\operatorname{Mg} \times \frac{5}{3}$
$R=5 \mathrm{Mg} / 3$

4(b) N2L towards centre
$\mathrm{R} \cos \theta=\mathrm{Ma}$
$\frac{5 \mathrm{Mg}}{3} \times \frac{4}{5}=\mathrm{M} \times \frac{8 \mathrm{~g}}{3 \mathrm{r}}$
$\mathrm{CP}=\mathrm{r}=2$
$\frac{\text { Height }}{\mathrm{r}}=\frac{4}{3}$
Height $=\frac{8}{3} \mathrm{~m}$

M1 dim correct
A1
B1

A1 answer given, convincing.

M1 dim correct
A1

A1

M1 use of similar triangles
A1 ft candidate's r if first M1 given.

5(a) $0<t<6$

5(b) Distance $\mathrm{t}=6$ to $\mathrm{t}=9=\int_{6}^{9} 2 t^{2}-12 t \mathrm{~d} t$

Distance $=\left[2 \mathrm{t}^{3} / 3-6 \mathrm{t}^{2}\right]^{9}{ }_{6}$

$$
=72
$$

$$
\begin{aligned}
& \text { Distance } \mathrm{t}=0 \text { to } \mathrm{t}=6=-\int_{0}^{6} 2 t^{2}-12 t \mathrm{~d} t \\
& \begin{aligned}
\text { Distance } & =-\left[2 \mathrm{t}^{3} / 3-6 \mathrm{t}^{2}\right]_{0}^{6} \\
& =-[-72] \\
& =72
\end{aligned}
\end{aligned}
$$

Required distance $=72+72$

$$
=\underline{144}
$$

B1 B1

M1 use of integration Limits not required

A1 correct integration

A1 or for the other integral
m1
A1 cao

$$
\text { 6(a) } \quad \begin{aligned}
\mathrm{T} & =\mathrm{P} / \mathrm{v} \\
\mathrm{~T} & =\frac{60 \times 1000}{20} \\
\mathrm{~T} & =\underline{3000 \mathrm{~N}}
\end{aligned}
$$

6(b) Apply N2L to car and trailer
$\mathrm{T}-(1500+500) \mathrm{gsin} \alpha-(170+30)=2000 \mathrm{a}$
$3000-2000 \times 9.8 \times \frac{1}{14}-200=2000 \mathrm{a}$
$\mathrm{a}=\underline{0.7 \mathrm{~ms}^{-2}}$

6(c) N2L applied to trailer
$\mathrm{T}-500 \mathrm{~g} \sin \alpha-30=500 \mathrm{a}$
$\mathrm{T}=500 \times 9.8 \times \frac{1}{14}+30+500 \times 0.7$
$T=\underline{730 N}$
OR
N2L applied to car 3000-1500gsin $\alpha-170-\mathrm{T}=1500 \times 0.7$
$\mathrm{T}=3000-1500 \times 9.8 \times \frac{1}{14}-170-1500 \times 0.7$
$\mathrm{T}=\underline{730 \mathrm{~N}}$

M1 used

A1

M1 dim correct equation All forces present
A2 -1 each error

A1 convincing

M1 dim correct, all forces
A2 -1 each error
(M1) dim correct, all forces
(A2) - 1 each error

7(a) PE at start $=-2 \times 9.8 \times 0.7$

$$
=-13.72 \mathrm{~J}
$$

PE at end $=-2 \times 9.8 \times(1.2+x)$

$$
=-23.52-19.6 x
$$

EE at end $=\frac{1}{2} \times \frac{360}{1 \cdot 2} \mathrm{x}^{2}$
EE at end $=150 \mathrm{x}^{2}$
Conservation of energy
$150 x^{2}-19.6 x-23.52=-13.72$
$150 x^{2}-19.6 x-9.8=0$
$\mathrm{x}=\underline{0.33}$

7(b) \quad KE at end $=0.5 \times 2 \mathrm{v}^{2}$

$$
=\mathrm{v}^{2}
$$

PE at end $=-2 \times 9.8 \times 1.2$

$$
=-23.52
$$

Conservation of energy
$\mathrm{v}^{2}-23.52=-13.72$
$\mathrm{v}^{2}=9.8$
$\mathrm{v}=\underline{3.13 \mathrm{~ms}^{-1}}$

M1 mgh used
A1 allow 0.7, (1.2+x), (0.5+x), 1.2, 0.5 , x.

M1 use of formula
A1

M1 equation, all energies
A1 correct equation any form
A1 cao

B1

M1 equation, no EE
A1 correct equation, any form
A1

8(a)	$\begin{aligned} & \text { Conservation of energy } \\ & 0.5 \mathrm{mu}^{2}+\mathrm{mgrcos} \alpha=0.5 \mathrm{mv}^{2}+\mathrm{mgrcos} \theta \\ & 0.5 \times 3 \times 5^{2}+3 \times 9.8 \times 4 \times 0.8= \\ & \quad 0.5 \times 3 \times \mathrm{v}^{2}+3 \times 9.8 \times 4 \times \cos \theta \\ & \\ & 75+188.16=3 \mathrm{v}^{2}+235.2 \cos \theta \\ & \mathrm{v}^{2}=87.72-78.4 \cos \theta \\ & \mathrm{v}=\sqrt{ }(87.72-78.4 \cos \theta) \end{aligned}$	M1 A1 A1 A1	equation required KE PE cao
8(b)	N2L towards centre $\mathrm{mg} \cos \theta-\mathrm{R}=\mathrm{ma}$ $\begin{aligned} & \mathrm{R}=3 \times 9.8 \cos \theta-\frac{3}{4}(87.72-78.4 \cos \theta) \\ & \mathrm{R}=29.4 \cos \theta-65.79+58.8 \cos \theta \\ & \mathrm{R}=88.2 \cos \theta-65.79 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~m} 1 \end{aligned}$	dim correct, all forces substitute, $\mathrm{v}^{2} / \mathrm{r}$

1(a)(i) Apply N2L to particle

$$
\mathrm{ma}=-\mathrm{mg}-3 \mathrm{v}
$$

$$
2 \frac{\mathrm{~d} v}{\mathrm{~d} t}=-19.6-\mathrm{v}
$$

1(a)(ii) $\int \frac{2 \mathrm{~d} v}{19.6+v}=-\int \mathrm{d} t$
$2 \ln |19.6+v|=-t+(\mathrm{C})$
$t=0, v=24.5$
$\mathrm{C}=2 \ln |44.1|$
$-t=2 \ln \left|\frac{19.6+v}{44.1}\right|$
$\mathrm{e}^{-t / 2}=\frac{19.6+v}{44.1}$
$y=44.1 \mathrm{e}^{-t / 2}-19.6$

1(b) At maximum height, $v=0$

$$
\begin{aligned}
t & =-2 \ln \left|\frac{19.6}{44.1}\right| \\
& =\underline{2 \ln (2.25)}=1.62 \mathrm{~s}
\end{aligned}
$$

1(c) $\quad \frac{\mathrm{d} x}{\mathrm{~d} t}=44.1 \mathrm{e}^{-t / 2}-19.6$
$x=-88.2 \mathrm{e}^{-t / 2}-19.6 t(+\mathrm{C})$
When $t=0, x=0$
$\mathrm{C}=88.2$
$x=\underline{88.2-88.2 \mathrm{e}^{-t / 2}-19.6 t}$

M1 dim correct equation
A1

M1 sep. of variables
A1 correct integration
m1 use of initial conditions
A1 ft no $2,1 / 2$.
m1 inversion \ln to e
A1 cao

M1 si

A1 ft similar expression

M1 $\quad v=\frac{\mathrm{d} x}{\mathrm{~d} t}$ used
A1 ft correct integration
m1 use of initial conditions
A1 ft one slip
Q Solution \quad Mark Notes

2(a) Amplitude $a=0.5$
B1

2(b) Period $=\frac{2 \pi}{\omega}=2$
$\omega=\pi$
Maximum acceleration $=a \omega^{2}=0.5 \times \pi^{2}$ Occurs at end points of motion

B1 ft amplitude a.
B1

2(c) $\begin{array}{ll}\text { Let } x=a \cos (\omega t) & \text { M1 } \\ -0.25=0.5 \cos (\pi t) & \mathrm{m} 1 \\ \cos (\pi t)=-0.5 & \\ \pi t=\frac{2 \pi}{3} & \\ t=\frac{2}{3} & \text { A1 } \quad \text { cao }\end{array}$
2(d) $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right), x=0.3, \omega=\pi$
M1
$v^{2}=\pi^{2}\left(0.5^{2}-0.3^{2}\right)$
A1 ft
$v^{2}=\pi^{2} \times 0.4^{2}$
$v=(\pm) 0.4 \pi$
speed $=0.4 \pi$
A1 cao

Q	Solution	Mark	Notes
3(a)(i)	Apply N2L to P	M1	
	$2 a=-8 x-10 v$	A1	
	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-4 x-5 \frac{\mathrm{~d} x}{\mathrm{~d} t}$		
3(a)(ii)	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+4 x=0$		
	Auxiliary equation $\mathrm{m}^{2}+5 \mathrm{~m}+4=0$ $(m+4)(m+1)=0$	B1	
	$\mathrm{m}=-4,-1$	B1	
	CF $x=A \mathrm{e}^{-t}+B \mathrm{e}^{-4 t}$	B1	ft values of roots
	When $t=0, x=2, \frac{\mathrm{~d} x}{\mathrm{~d} t}=3$	M1	use of initial conditions
	$2=A+B$		
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=-A \mathrm{e}^{-t}-4 B \mathrm{e}^{-4 t}$	B1	
	$3=-A-4 B$	A1	both equations correct
	Adding $5=-3 B$	m1	solving simultaneously
	$B=-\frac{5}{3}$		
	$A=2+-\frac{5}{3}=\frac{11}{3}$		
	$x=\frac{11}{3} \mathrm{e}^{-t}-\frac{5}{3} \mathrm{e}^{-4 t}$	A1	cao
3(b)	$\begin{aligned} & \text { Try } x=\mathrm{a} t+\mathrm{b} \\ & \frac{\mathrm{~d} x}{\mathrm{~d} t}=\mathrm{a} \end{aligned}$	M1	
	$5 \mathrm{a}+4(\mathrm{a} t+\mathrm{b})=12 \mathrm{t}-3$	A1	
	$4 \mathrm{a}=12$	m1	comparing coefficients
	$\mathrm{a}=3$		
	$5 \mathrm{a}+4 \mathrm{~b}=-3$		
	$15+4 \mathrm{~b}=-3$		
	$4 \mathrm{~b}=-18$		
	$\mathrm{b}=-\frac{9}{2}$		
	2		
	General solution $x=A \mathrm{e}^{-t}+B \mathrm{e}^{-4 t}+3 t-\frac{9}{2}$	A1	cao

4 Initial speed of A just before impact $=\mathrm{v}$

$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}, \mathrm{u}=0, \mathrm{a}=(\pm) 9.8, \mathrm{~s}=(1.8-0.2)$	M1	
$\mathrm{v}^{2}=0+2 \times 9.8 \times 1.6$	A1	
$\mathrm{v}=\underline{5.6 \mathrm{~ms}^{-1}}$	A1	cao
Impulse $=$ Change in momentum	M1	used
Applied to B		
$\mathrm{J}=3 \mathrm{v}$	B1	

Applied to A $\mathrm{J}=5 \times 5.6-5 \mathrm{v}$

A1 ft c's answer in (a)
Solving
$3 \mathrm{v}=28-5 \mathrm{v} \quad \mathrm{m}$
$8 \mathrm{v}=28$
$\mathrm{v}=3.5 \mathrm{~ms}^{-1} \quad \mathrm{~A} 1$ cao
$\mathrm{J}=\underline{10.5 \mathrm{Ns}}$
A1 cao

5(a) N2L applied to particle
$0.25 a=\frac{5}{2 x+1} \quad$ M1
$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{20}{2 x+1}$
$\int v \mathrm{~d} v=10 \int \frac{2}{2 x+1} \mathrm{~d} x$
$\frac{1}{2} v^{2}=10 \ln |2 x+1|+\mathrm{C}$
When $x=0, v=4$
$8=10 \ln (1)+C$
$\mathrm{C}=8$
$v^{2}=20 \ln |2 x+1|+16$
$\ln |2 x+1|=\frac{1}{20}\left(v^{2}-16\right)$
$2 x+1=e^{0.05\left(v^{2}-16\right)}$
$x=0.5\left(e^{0.05\left(v^{2}-16\right)}-1\right)$

$$
\text { 5(b) } \quad \begin{aligned}
& v=6 \\
& x=0.5\left(\mathrm{e}^{0.05(36-16)}-1\right) \\
& x=0.5(\mathrm{e}-1) \\
& x=\underline{0.86 \mathrm{~m}}
\end{aligned}
$$

$$
\text { 5(c) } \begin{aligned}
& a=5 \\
& \frac{20}{2 x+1}=5 \\
& 20=10 x+5 \\
& x=1.5 \\
& v^{2}=20 \ln (3+1)+16 \\
& =20 \ln 4+16 \\
& v=\underline{6.61 \mathrm{~ms}^{-1}}
\end{aligned}
$$

M1 $a=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$
M1 separating variables

A1 correct integration \ln
A1 LHS correct
m 1 use of boundary cond.
All 3 M's awarded
m1 inversion, 3 M's awarded
A1 cao any equivalent exp.

M1 exp. with v^{2} needed
A1 cao

M1

A1
m1 substitution in expression with v^{2}.

A1 cao

6
6(a) Moments about A M
$6 \mathrm{~g} \times 2+3 \mathrm{~g} \times 3=T \times 4 \sin \theta$
$4 \times \frac{3}{5} T=21 \mathrm{~g}$
$T=\frac{35}{4} \mathrm{~g}=85.75 \mathrm{~N}$

6(b) Resolve vertically
$T \sin \theta+Y=9 \mathrm{~g}$
$Y=9 \mathrm{~g}-\frac{35}{4} \mathrm{~g} \times \frac{3}{5}$
$Y=\frac{15}{4} \mathrm{~g}=36.75 \mathrm{~N}$
Resolve horizontally
$T \cos \theta=X$
$X=\frac{35}{4} \mathrm{~g} \times \frac{4}{5}$
$X=7 \mathrm{~g}=68.6 \mathrm{~N}$

6(b)(i) Magnitude of reaction at wall

$$
\begin{aligned}
& =\sqrt{68 \cdot 6^{2}+36 \cdot 75^{2}} \\
& =77.82 \mathrm{~N} \\
\text { 6(b)(ii) } \mu & =\frac{Y}{X} \\
\mu & =\frac{15}{4 \times 7}=\frac{15}{28}
\end{aligned}
$$

A1 cao
M1 equation, no extra forces No missing forces
A2 -1 each error

M1 equation, all forces, no
extra force
A1

A1 cao

M1 equation, all forces, No extra force

A1 cao

M1

A1 $\mathrm{ft} X$ and Y
M1 used

A1 $\quad \mathrm{ft} X$ and Y if answer<1.

S1

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \\
\& \mathrm{P}(\mathrm{~B})=0.4-0.25=0.15 \\
\& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \\
\& 0.4=0.25+\mathrm{P}(\mathrm{~B})-0.25 \mathrm{P}(\mathrm{~B}) \\
\& \mathrm{P}(\mathrm{~B})=0.15 / 0.75=0.2
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
Award M1 for using formula \\
Award M1 for using formula
\end{tabular} \\
\hline 2(a)

(b)

(c) \& \[
$$
\begin{aligned}
& \left.\begin{array}{rl}
\begin{array}{rl}
(1 \text { of each }) & = \\
\frac{5}{10} \times \frac{3}{9} \times \frac{2}{8} \times 6 & \text { or }\binom{5}{1} \times\binom{ 3}{1} \times\binom{ 2}{1} \div\binom{ 10}{3} \\
& =\frac{1}{4} \\
\mathrm{P}(3 \text { war }) & =\frac{5}{10} \times \frac{4}{9} \times \frac{3}{8} \text { or }\binom{5}{3} \div\binom{ 10}{3} \\
& =\frac{1}{12} \\
\mathrm{P}(3 \text { cowboy }) & =\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} \text { or }\binom{3}{3} \div\binom{ 10}{3} \\
& =\frac{1}{120} \\
\mathrm{P}(3 \text { the same }) & =\frac{1}{12}+\frac{1}{120}=\frac{11}{120}
\end{array}
\end{array} . \begin{array}{l}
\text { (}
\end{array}\right)
\end{aligned}
$$

\] \& | M1A1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1 |
| M1A1 | \& | M1A0A0 if 6 omitted Special case : if they use an incorrect total, eg 9 or 11, FT their incorrect total but subtract 2 marks at the end |
| :--- |
| FT previous values |

\hline 3 \& $$
\begin{aligned}
E(X) & =20 \\
\operatorname{Var}(X) & =4 \quad(\mathrm{SD}=2) \\
E(Y) & =20 a+b=65 \\
\operatorname{Var}(Y) & =4 a^{2}=36 \\
a & =3 \\
b & =5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \mathbf{B 1} \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | Accept $\mathrm{SD}(Y)=2 a=6$ |
| :--- |
| Must be justified by solving the two equations |

\hline | 4(a)(i) |
| :--- |
| (ii) |
| (iii) | \& \[

$$
\begin{aligned}
& \mathrm{B}(20,0.25) \\
& \mathrm{P}(3 \leq X \leq 9)=0.9087-0.0139 \text { or } 0.9861-0.0913 \\
& =0.8948 \\
& \mathrm{P}(X=6)=\binom{20}{6} \times 0.25^{6} \times 0.75^{14} \\
& \quad=0.169
\end{aligned}
$$
\] \& B1

B1B1
B1
M1

A1 \& | B must be mentioned and the parameters n and p must be seen or implied somewhere in the question |
| :--- |
| FT an incorrect p except for the last three marks |
| M0 if no working seen |

\hline | (b)(i) |
| :--- |
| (ii) | \& Let Y denote the number of throws giving ' 8 ' Then Y is $\mathrm{B}(160,0.0625) \approx \operatorname{Poi}(10)$.

$$
\begin{gathered}
\mathrm{P}(Y=12)=\mathrm{e}^{-10} \times \frac{10^{12}}{12!} \\
=0.0948 \\
\mathrm{P}(6 \leq Y \leq 14)=0.9165-0.0671 \text { or } 0.9329-0.0835 \\
=0.8494 \text { cao }
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1B1 } \\
\text { B1 } \\
\hline
\end{gathered}
$$
\] \& M0 if no working seen Accept the use of tables Correct values only (no FT)

\hline
\end{tabular}

Ques	Solution	Mark	Notes
$\mathbf{1 (a) (i)}$ (ii)	$\begin{array}{r} z=\frac{10.5-10}{2}=0.25 \\ \mathrm{P}(X \leq 10.5)=0.5987 \end{array}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	M0 for 2^{2} or $\sqrt{2}$ M1A0 for -0.25 if final answer incorrect M0 no working
	$\begin{gathered} x=\frac{x-\mu}{\sigma}=1.282 \\ =12.564 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 for 2.326, 1.645, 2.576 Accept 12.6
(b)(i)	$\begin{aligned} \mathrm{E}(X+2 Y) & =34 \\ \operatorname{Var}(X+2 Y) & =\operatorname{Var}(X)+4 \operatorname{Var}(Y) \\ & =40 \end{aligned}$ We require $\mathrm{P}(X+2 Y<36)$ $z=\frac{36-34}{\sqrt{40}}=0.32$ Prob $=0.6255$	B1 B1 M1A1 A1	FT their mean and variance M0 no working
	$\begin{aligned} & \text { Consider } U=X_{1}+X_{2}+X_{3}-Y_{1}-Y_{2} \\ & \mathrm{E}(U)=3 \times 10-2 \times 12=6 \\ & \operatorname{Var}(U)=3 \times 4+2 \times 9=30 \end{aligned}$ We require $\mathrm{P}(\mathrm{U}<0)$ $\begin{aligned} & z=\frac{0-6}{\sqrt{30}}=-1.10 \\ & \text { Prob }=0.136 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \\ \text { m1A1 } \\ \text { A1 } \end{gathered}$	Do not FT their mean and variance
2(a)	$\begin{aligned} & \bar{x}=\frac{9980}{50} \quad(=199.6) \\ & \text { SE of } \bar{X}=\frac{4}{\sqrt{50}} \quad(=0.5656 \ldots) \\ & 95 \% \text { conf limits are } \\ & 199.6 \pm 1.96 \times 0.5656 \ldots \\ & \text { giving }[198.5,200.7] \text { cao } \end{aligned}$	B1 B1 M1A1 A1	M1 correct form, A1 correct z. M0 no working
(b)	Width of $95 \% \mathrm{CI}=3.92 \times \frac{4}{\sqrt{n}} \quad$ si We require $\begin{aligned} & 3.92 \times \frac{4}{\sqrt{n}}<1 \\ & n>245.86 \ldots \end{aligned}$ Minimum $n=246$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	FT their z from (a) Award M1A0A0 for 1.96 instead of 3.92 FT from line above if $n>50$

3(a) (b)	$\begin{gathered} H_{0}: \mu_{B}=\mu_{G} ; H_{1}: \mu_{B} \neq \mu_{G} \\ \bar{x}_{B}=\frac{482}{8}=60.25 ; \bar{x}_{G}=\frac{430}{8}=53.75 \end{gathered}$ SE of diff of means $=\sqrt{\frac{7.5^{2}}{8}+\frac{7.5^{2}}{8}}$ Test statistic $(z)=\frac{60.25-53.75}{3.75}$ $=1.73$ Prob from tables $=0.0418$ $p \text {-value }=0.0836$ Insufficient evidence to conclude that there is a difference in performance between boys and girls.	$\begin{gather*} \hline \text { B1 } \\ \text { B1B1 } \tag{3.75}\\ \text { M1A1 } \\ \text { m1A1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \end{gather*}$	FT their z if M marks gained FT on line above FT their p-value
4(a) (b) (c)	$H_{0}: p=0.4 ; H_{1}: p>0.4$ Let $X=$ No. supporting politician so that X is $\mathrm{B}(50,0.4)$ (under H_{0}) si $p \text {-value }=\mathrm{P}(X \geq 25 \mid X \text { is } \mathrm{B}(50,0.4))$ $=0.0978$ Insufficient evidence to conclude that the support is greater than 40%. X is now $\mathrm{B}(400,0.4)$ (under $\left.\mathrm{H}_{0}\right) \approx \mathrm{N}(160,96)$ $\begin{aligned} p \text {-value } & =\mathrm{P}(X \geq 181 \mid X \text { is } \mathrm{N}(160,96)) \\ z & =\frac{180.5-160}{\sqrt{96}} \\ & =2.09 \\ p \text {-value } & =0.0183 \end{aligned}$ Strong evidence to conclude that the support is greater than 40%.	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { m1A1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	M0 for $\mathrm{P}(X=25)$ or $\mathrm{P}(X>25)$ M0 normal or Poisson approx FT on p-value Award m1A0A1A1 for incorrect or no continuity correction $\begin{aligned} & 181.5 \rightarrow z=2.19 \rightarrow p=0.01426 \\ & 181 \rightarrow z=2.14 \rightarrow p=0.01618 \end{aligned}$ FT on p-value
5(a) (b)(i) (ii)	$\mathrm{H}_{0}: \mu=1.2: \mathrm{H}_{1}: \mu<1.2$ Let $X=$ number of accidents in 60 days Then X is $\operatorname{Poi}(72)$ (under $\left.\mathrm{H}_{0}\right) \approx \mathrm{N}(72,72)$ si $\begin{aligned} \text { Sig level } & =\mathrm{P}\left(X \leq 58 \mid \mathrm{H}_{0}\right) \\ z & =\frac{58.5-72}{\sqrt{72}} \\ & =-1.59 \end{aligned}$ Sig level $=0.0559$ X is now $\operatorname{Poi}(48)$ which is approx $\mathrm{N}(48,48)$ si $\mathrm{P}($ wrong conclusion $)=\mathrm{P}(X \geq 59 \mid \mu=0.8)$ $\begin{aligned} z & =\frac{58.5-48}{\sqrt{48}} \\ & =1.52 \end{aligned}$ $\mathrm{P}($ wrong conclusion $)=0.0643$	B1 B1 M1 m1A1 A1 A1 B1 M1 m1A1 A1 A1	Must be μ Award m1A0A1A1 for incorrect or no continuity correction $\begin{aligned} & 57.5 \rightarrow z=-1.71 \rightarrow p=0.0436 \\ & 58 \rightarrow z=-1.65 \rightarrow p=0.0495 \end{aligned}$ Award m1A0A1A1 for incorrect or no continuity correction $\begin{aligned} & 59.5 \rightarrow z=1.66 \rightarrow p=0.0485 \\ & 59 \rightarrow z=1.59 \rightarrow p=0.0559 \end{aligned}$

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
5(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
H_{0}: \mu_{A} \& =\mu_{B} ; H_{1}: \mu_{A} \neq \mu_{B} \\
\bar{x} \& =55.25 ; \bar{y}=55.75 \\
s_{x}^{2} \& =\frac{183345}{59}-\frac{3315^{2}}{59 \times 60}=3.2415 \ldots \\
s_{y}^{2} \& =\frac{186651}{59}-\frac{3345^{2}}{59 \times 60}=2.8347 \ldots
\end{aligned}
\] \\
[Accept division by 60 giving 3.1875 and 2.7875] \\
Insufficient evidence for believing that the mean weights are unequal.
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\text { M1A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { m1 } \\
\text { A1 } \\
\text { A1 } \\
\text { B1 }
\end{gathered}
\] \& FT 1 error in the means Answer only no marks FT their p -value \\
\hline 6(a)

(b) \& $$
\begin{gathered}
\sum x=175, \sum x^{2}=5075, \sum y=118.1, \sum x y=3170 \\
S_{x y}=3170-175 \times 118.1 / 7=217.5 \\
S_{x x}=5075-175^{2} / 7=700 \\
b=\frac{217.5}{700}=0.311 \\
a=\frac{118.1-175 \times 0.311 . .}{7}=9.10 \\
\\
\text { SE of } a=\sqrt{\frac{0.1^{2} \times 5075}{7 \times 700}} \quad(0.1017 \ldots) \\
95 \% \text { confidence limits for } \alpha \text { are } \\
9.10 \pm 1.96 \times 0.1017 \ldots \\
\text { giving }[8.9,9.3]
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\hline \text { B2 } \\
\text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { M1A1 } \\
\text { m1A1 } \\
\text { A1 }
\end{gathered}
$$

\] \& | Minus 1 each error FT 1 error in sums |
| :--- |
| FT their value of a |
| M1 correct form, A1 1.96 |

\hline
\end{tabular}

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

